4 Векторные сигнальные пучки

Однородное по сечению пучка состояние поляризации – частный случай векторных пучков, формируемых генераторами с регулярными правилами отбора состояния поляризации в петле обратной связи (оптическом резонаторе или передающей антенне). Строго говоря, состояние поляризации должно меняться в процессе распространения пучка. Более детальный анализ показывает, что тип состояния поляризации может существенно изменить параметры фокусировки пучка, прохождение через волноведущие структуры, прежде всего одномодовые оптические волокна.

4.1 Теоретическая модель синтеза пучков с неоднородной поляризацией

Создание неоднородной поляризации по профилю пучка возможно как на стадии генерации излучения, так и дополнительной поляризационной пространственной фильтрацией исходно однородно поляризованного профиля. Первый вариант реализуется специальной подготовкой оптического резонатора для селекции требуемого профиля поляризации. Один из известных приемов – использование дифракционного зеркала с высокой локальной поляризационной селективностью, рельеф которого настроен на конкретный тип моды, обеспечивая ей максимум генерируемой мощности или энергии (при импульсном режиме).

Для синтеза пучка с неоднородной поляризацией вне генератора можно использовать интерференцию мод Эрмит-Гаусса и Лагерр-Гаусса с однородными состояниями поляризации, линейными и кру-

говыми. Пусть имеется набор пучков Лагерр-Гаусса, профиль которых в собственном масштабе длин запишем следующим образом:

$$LG_{n,m}(x,y) = exp[-(x^2+y^2)](x+iy)^{|m|}L_n^{|m|}(x,y), n.m = 0,1,...$$

здесь m - топологический заряд пучка. Знак числа m определяет направление обхода точки на оси пучка с координатами (0,0) - "+" против часовой стрелки, "-"по часовой стрелке, значение - число переходов фазы $0 \Rightarrow 2\pi$.

Аксиально-симметричное распределение поляризации по профилю пучка в плоскости наблюдения можно создать при наложении двух Лагерр-Гауссовых пучков с равными по величине и противоположными по знаку топологическими зарядами. Каждый их пучков должен быть исходно циркулярно поляризованными, направления циркулярной поляризации взаимно противоположны. Определим пучки с радиальным и азимутальным состояниями поляризации следующим образом:

$$\vec{R} = LG_{0,1}(\vec{e}_x - i\vec{e}_y)e^{i\omega t} + LG_{0,-1}(\vec{e}_x + i\vec{e}_y)e^{i\omega t}, \tag{4.1}$$

$$\vec{A} = LG_{0,1}(\vec{e}_x - i\vec{e}_y)e^{i\omega t} - LG_{0,-1}(\vec{e}_x + i\vec{e}_y)e^{i\omega t}, \tag{4.2}$$

где \vec{e}_x, \vec{e}_y - орты декартовой системы координат в плоскости интерференции пучков. Описанная схема наложения парциальных пучков с круговой поляризацией представлена на Puc.4.1.

Поскольку моды Эрмит-Гаусса и Лагерр Гаусса связаны астигматическими преобразованиями:

$$\iint_{\mathbb{R}^2} e^{-i(xx_1+yy)} e^{2ix_1y_1} HG_{n,m}(x_1,y_1) dx_1 dy_1 = \tag{4.3}$$

$$= \frac{\pi}{\sqrt{2}} (-1)^{n+m} exp\left(-\frac{ixy}{4}\right) LG_{m,n-m}\left(\frac{x}{2\sqrt{2}}, \frac{y}{2\sqrt{2}}\right), \quad n \ge m,$$

$$\iint_{\mathbb{R}^2} e^{i(xx_1 + yy_1)} e^{\frac{ix_1y_1}{8}} (2i)^n m! LG_{m,n-m} \left(\frac{x_1}{2\sqrt{2}}, \frac{y_1}{2\sqrt{2}} \right) dx_1 dy_1 = (4.4)$$

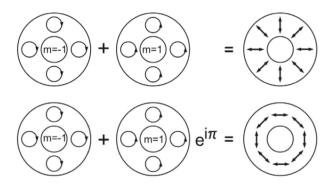


Рис. 4.1: Интерференционный синтез пучков с пространственно неоднородной поляризацией (радиальной в верхнем ряду и азимутальной – в нижнем)

$$=4\sqrt{2}\pi(-1)^{n+m}exp(2ixy)HG_{n,m}(x,y), n \ge m,$$

синтез неоднородно поляризованного пучка можно осуществить на основе ортогонально поляризованных мод Эрмит-Гаусса. Несколько вариантов подобной конвертации на базе $LG_{0,1}$ и $LG_{1,0}$ представлены на Puc.4.2.

4.2 Анализ пучков с неоднородной поляризацией

Анализ неоднородного состояния поляризации выполним стандартными методами с использованием аппарата матриц и векторов Джонса. Для пучка с радиальной поляризацией (4.1) столбец Джонса имеет вид:

$$\vec{R} = \begin{pmatrix} (LG_{0,1} + LG_{0,-1}) \exp(i\omega t) \\ -i(LG_{0,1} - LG_{0,-1}) \exp(i\omega t) \end{pmatrix}$$

Пусть неоднородно поляризованный пучок проходит через поляризатор, направление пропускания которого составляет угол θ с горизонтальной осью. Построим матрицу Джонса такого устройства:

Суперпозиция	Формируемый тип поляризации
+ + + =	Радиальная
+ + + + + + + + + + + + + + + + + + + +	Азимутальная
	Смешанная линейная
$-i\left(\downarrow\right)\left(\downarrow\right) = \left(\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{smallmatrix}\right)$	Смешанная линейно-круговая
$+i+i+j+=\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	

Рис. 4.2: Интерференционный синтез пучков с пространственно неоднородной поляризацией на базе пучков Эрмит-Гауса

$$\hat{P} = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix}$$

На выходе поляризатора столбец Джонса преобразованного пучка принимает вид:

$$\vec{R}_P = \hat{P}\vec{R} = \begin{pmatrix} R_x \cos^2 \theta + R_y \cos \theta \sin \theta \\ R_x \cos \theta \sin \theta + R_y \sin^2 \theta \end{pmatrix}$$

Иллюстрация экспериментально регистрируемой зависимости профиля интенсивности неоднородно поляризованных пучков на выходе поляризатора представлена на Рис.4.3. Радиальная, азимутальная, смешанная линейная и смешанная линейно-круговая неодно-



Рис. 4.3: Анализ пучков с пространственно неоднородной поляризацией

родные состояния поляризации могут быть использованы как кодовые элементы, однозначно распознаваемые на стороне приемника с помощью одного или двух поляризационных фильтров.

4.3 Астигматические преобразования пучков с неоднородной поляризацией

Использование поляризационного кодирования на основе неоднородных состояний поляризации возможно при сохранении состояния поляризации в процессе распространения пучка в свободном пространстве и при астигматических преобразованиях. Автомодельные свойства Эрмит-Гауссовых и Лагерр-Гауссовых пучков при распространении обеспечивают независимость масштабных преобразований действительной части комплексной амплитуды от собственных значений (n,m), однако фазовый набег для парциальных компонент (например $LG_{0,1}$ и $LG_{0,-1}$) может быть различным. Важно определить класс допустимых искажений исходно синтезированно-

го неоднородного состояния поляризации.

Рассмотрим результат астигматического преобразования пучка с радиальной поляризацией, синтезированного на основе Лагерр-Гауссовых пучков. Введем оператор астигматического преобразования AT, выполняющий трансформации профилей пучков согласно выражениям (4.3) и (4.4):

$$AT(\vec{R}) = AT(LG_{0,1})(\vec{e}_x - i\vec{e}_y)e^{i\omega t} + AT(LG_{0,-1})(\vec{e}_x + i\vec{e}_y)e^{i\omega t}, (4.5)$$

$$AT(\vec{A}) = AT(LG_{0,1})(\vec{e}_x - i\vec{e}_y)e^{i\omega t} - AT(LG_{0,-1})(\vec{e}_x + i\vec{e}_y)e^{i\omega t}, (4.6)$$

Моды Лагерр-Гаусса $LG_{0,1}, LG_{0,-1}$ связаны следующим образом:

$$LG_{0,1} = -iLG_{0,-1},$$

что позволяет записать правила астигматической трансформации векторного пучка в виде:

$$AT(\vec{R}) = Ce^{2ixy}[HG_{1,0}(\vec{e}_x - i\vec{e}_y) - iHG_{0,1}(\vec{e}_x + i\vec{e}_y)]e^{i\omega t}, \qquad (4.7)$$

$$AT(\vec{A}) = Ce^{2ixy}[HG_{1,0}(\vec{e}_x - i\vec{e}_y) + iHG_{0,1}(\vec{e}_x + i\vec{e}_y)]e^{i\omega t}, \qquad (4.8)$$

здесь C - константа преобразования.

Трансформированный в результате астигматического преобразования неоднородно поляризованный пучок в каждой точке плоскости наблюдения (x,y) будет иметь различное состояние поляризации из-за различия амплитуд парциальных компонент $HG_{1,0}(x,y)$ и $HG_{0,1}(x,y)$. Вдоль направлений ортов \vec{e}_x, \vec{e}_y на прямой, проходящей через ось пучка, сохраняется круговая поляризация, "наследуемая" парциальными Эрмит-Гауссовыми транформантами от исходных Лагерр-Гауссовых (см. Рис.4.4).

Для детального анализа пространственного изменения состояния поляризации формально определим тригонометрические функции:

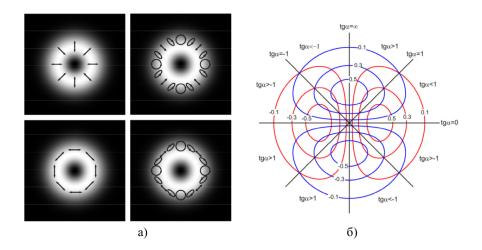


Рис. 4.4: Астигматические преобразования пучков с радиальной (верхний ряд) и азимутальной (нижний ряд) неоднородными поляризациями, синтезированными на основе мод $HG_{0,1}, HG_{0,-1}$ – левый рисунок. Справа показаны амплитудные изолинии мод Эрмит-Гаусса и значения $\operatorname{tg} \alpha$.

$$\cos \alpha(x,y) = \frac{HG_{1,0}(x,y)}{\sqrt{HG_{1,0}^2(x,y) + HG_{0,1}^2(x,y)}},$$

$$\sin \alpha(x,y) = \frac{HG_{0,1}(x,y)}{\sqrt{HG_{1,0}^2(x,y) + HG_{0,1}^2(x,y)}},$$

$$\operatorname{tg} \alpha(x,y) = \frac{HG_{1,0}(x,y)}{HG_{0,1}(x,y)},$$

и запишем с точностью до совпадающих множителей:

$$AT(\vec{R}) \Rightarrow \left[\cos\alpha(x,y)(\vec{e}_x - i\vec{e}_y) - i\sin\alpha(x,y)(\vec{e}_x + i\vec{e}_y)\right] =$$

$$= e^{-i\alpha(x,y)}\vec{e}_x + e^{-i\pi/4 - i\alpha(x,y)}\vec{e}_y,$$

$$AT(\vec{A}) \Rightarrow \left[\cos\alpha(x,y)(\vec{e}_x - i\vec{e}_y) + i\sin\alpha(x,y)(\vec{e}_x + i\vec{e}_y)\right] =$$

$$= e^{+i\alpha(x,y)}\vec{e}_x - e^{-i\pi/4 + i\alpha(x,y)}\vec{e}_y.$$

Баланс амплитуд парциальных циркулярно поляризованных компонент определяется значением $\operatorname{tg} \alpha(x,y)$, которое меняется в пределах $(-\infty,\infty)$, соответственно изменяя состояние локальной поляризации от правой круговой к левой с переходом через многообразие эллиптических и радиально или азимутально ориентированные линейные, как это изображено на $\operatorname{Puc.} 4.4$.

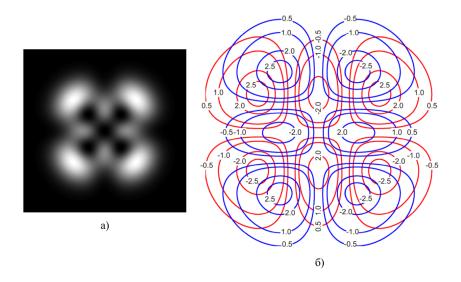


Рис. 4.5: Интенсивность трансформированного пучка с исходной радиальной поляризацией, синтезированного из циркулярно поляризованных мод $LG_{1,1}$ и $LG_{1,-1}$ и изолинии полученных после астигматической конвертации мод $HG_{1,2}$ и $HG_{2,1}$

Пространственное распределение интенсивности при трансформации пучка, синтезированного из мод $LG_{0,1}$ и $LG_{0,-1}$ сохраняет

осевую симметрию, что может быть дополнительным правилом распознавания профиля исходных парциальных компонент. Если использовать для синтеза иные пары мод Лагерр-Гаусса, например $LG_{1,1}$ и $LG_{1,-1}$:

$$\vec{R} = LG_{1,1}(\vec{e}_x - i\vec{e}_y)e^{i\omega t} + LG_{1,-1}(\vec{e}_x + i\vec{e}_y)e^{i\omega t},$$

$$\vec{A} = LG_{1,1}(\vec{e}_x - i\vec{e}_y)e^{i\omega t} - LG_{1,-1}(\vec{e}_x + i\vec{e}_y)e^{i\omega t},$$

модуль комплексной амплитуды пучка после астигматического преобразования потеряет осевую симметрию, как это изображено на Рис.4.5. Аналитическая запись для конвертированного распределения имеет вид:

$$AT(\vec{R}) \Rightarrow HG_{1,2}(\vec{e}_x - i\vec{e}_y)e^{i\omega t} + HG_{2,1}(\vec{e}_x + i\vec{e}_y)e^{i\omega t},$$

$$AT(\vec{A}) \Rightarrow HG_{1,2}(\vec{e}_x - i\vec{e}_y)e^{i\omega t} - HG_{2,1}(\vec{e}_x + i\vec{e}_y)e^{i\omega t}.$$

Описанные смешанные типы поляризации векторных пучков, объединяющие весь диапазон доступных состояний от правой до левой круговой получили название гибридной поляризации, а пучки – гибридно поляризованных пучков.

4.4 Экспериментальные методы синтеза пучков с неоднородной поляризацией

Использование неоднородной или гибридной поляризации векторных пучков в задачах кодирования передаваемых сигналов требует технологической ясности процесса генерации и регистрации используемых распределений. Первичное внерезонаторное формирование пространственно устойчивых мод для систем оптической связи перспективно выполнять с помощью дифракционных оптических элементов, размещаемых на пути когерентного уширенного пучка ТЕМ00 с достаточной апертурой.

Примеры пространственного распределения коэффициента пропускания по плоскости дифракционного элементов, порождающих моды Эрмит-Гауссы представлены на Рис. 4.6.

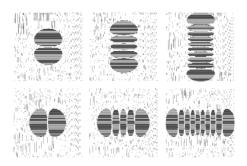


Рис. 4.6: Подложка с тремя парами дифракционных оптических элементов, формирующих моды $HG_{0,n}, HG_{n,0}$ для n=1, 4, 9

После создания пространственно разнесенных парциальных мод Эрмит-Гаусса или Лагерр-Гаусса необходимо исходную линейную поляризацию преобразовать в регулярную круговую, что выполняется четвертьволновыми фазовыми пластинками с соответствующей ориентацией "быстрой" и "медленной" полуосей. Самый критичный этап в процессе синтеза гибридно поляризованных пучков состоит в "сведении" отдельных компонент в единый пучок с достаточной для формирования требуемой интерференционной картины точностью.

Одна из эффективных экспериментальных схем пространственного "сведения" основана на использовании однотипных пространственно модулирующих дифракционных решеток с узким пространственно - частотным спектром (Рис.4.7).

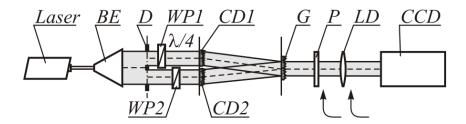


Рис. 4.7: Схема когерентного суммирования двух световых полей с круговыми поляризациями. ВЕ (Beam Expander) — расширитель лазерного пучка, D — профилированная диафрагма, включающая дифракционный элементы для генерации парциальных мод. WP1, WP2 — четвертьволновые пластинки, CD1, CD2 — дифракционный оптический элемент с несущей пространственной частотой. G — дифракционная решётка или дифракционный элемент с согласованной пространственной частотой. P — поляризатор-анализатор. LD — Фурье-объектив. CCD — ПЗС-регистратор.